Given an array arr of positive integers sorted in a strictly increasing order, and an integer k.
Find the kth positive integer that is missing from this array.
Example 1:
Input: arr = [2,3,4,7,11], k = 5
Output: 9
Explanation: The missing positive integers are [1,5,6,8,9,10,12,13,...]. The 5th missing positive integer is 9.
Example 2:
Input: arr = [1,2,3,4], k = 2
Output: 6
Explanation: The missing positive integers are [5,6,7,...]. The 2nd missing positive integer is 6.
Constraints:
1 <= arr.length <= 1000
1 <= arr[i] <= 1000
1 <= k <= 1000
arr[i] < arr[j] for 1 <= i < j <= arr.length
这题,一开始看的时候,脑抽,以为是求区间的,而且以为区间的最大值是1000.debug了半天off by one issue。最后终于写对了一个O(n)的。但其实因为是排序的,我们可以通过arr[i] - i -1知道这个数字前面有多少个missing的数字。然后用k来二分查找就ok了,就O(nlogn)了。但!九章二分套了半天还off by one。
解法一:二分
public int findKthPositive(int[] arr, int k) {
int left = 0, right = arr.length - 1;
while (left <= right) {
int pivot = left + (right - left) / 2;
// If number of positive integers
// which are missing before arr[pivot]
// is less than k -->
// continue to search on the right.
if (arr[pivot] - pivot - 1 < k) {
left = pivot + 1;
// Otherwise, go left.
} else {
right = pivot - 1;
}
}
// At the end of the loop, left = right + 1,
// and the kth missing is in-between arr[right] and arr[left].
// The number of integers missing before arr[right] is
// arr[right] - right - 1 -->
// the number to return is
// arr[right] + k - (arr[right] - right - 1) = k + left
return left + k;
}
解法二:一遍loop一遍求
public int findKthPositive(int[] arr, int k) {
// if the kth missing is less than arr[0]
if (k <= arr[0] - 1) {
return k;
}
k -= arr[0] - 1;
// search kth missing between the array numbers
int n = arr.length;
for (int i = 0; i < n - 1; ++i) {
// missing between arr[i] and arr[i + 1]
int currMissing = arr[i + 1] - arr[i] - 1;
// if the kth missing is between
// arr[i] and arr[i + 1] -> return it
if (k <= currMissing) {
return arr[i] + k;
}
// otherwise, proceed further
k -= currMissing;
}
// if the missing number if greater than arr[n - 1]
return arr[n - 1] + k;
}
解法三:算区间
public int findKthPositive(int[] arr, int k) {
if (arr == null || arr.length == 0 || k < 0) {
return -1;
}
int n = arr.length;
List<Pair<Integer, Integer>> locationToMissingCnt = new ArrayList<>();
int start = arr[0] - 0;
if (start > 1) {
Pair<Integer, Integer> pair = new Pair<>(-1, start - 1);
locationToMissingCnt.add(pair);
}
for (int i = 1; i < n; i++) {
int diff = arr[i] - arr[i - 1];
if (diff > 1) {
Pair<Integer, Integer> pair = new Pair<>(i - 1, diff - 1);
locationToMissingCnt.add(pair);
}
}
Pair<Integer, Integer> pair = new Pair<>(n, Integer.MAX_VALUE);
locationToMissingCnt.add(pair);
int startPair = 0;
for (Pair<Integer, Integer> p : locationToMissingCnt) {
if (k - p.getValue() <= 0) {
break;
}
k = k - p.getValue();
startPair++;
}
Pair<Integer, Integer> targetRange = locationToMissingCnt.get(startPair);
int locInArr = targetRange.getKey();
int numCur = 0;
if (locInArr == -1) {
numCur = 0;
} else if (locInArr == n) {
numCur = arr[n - 1];
} else {
numCur = arr[locInArr];
}
while (k > 0) {
numCur++;
k--;
}
return numCur;
}