326 Power of Three

Given an integer n, return true if it is a power of three. Otherwise, return false.

An integer n is a power of three, if there exists an integer x such that n == 3^x.

Example 1:

Input: n = 27
Output: true
Explanation: 27 = 3^3

Example 2:

Input: n = 0
Output: false
Explanation: There is no x where 3^x = 0.

Example 3:

Input: n = -1
Output: false
Explanation: There is no x where 3^x = (-1).

Constraints:

  • -231 <= n <= 231 - 1

Follow up: Could you solve it without loops/recursion?

这题不难,用循环直接除就是了。因为3的n次方的数,只能有3这个因数。如果除出来的数字不是1的话,那么就不是3的次方了。譬如,27 = 3 * 3 * 3。但12 = 3 * 4。这里,T:O(log3N), S: O(1)。这里follow up的解法是数学解法。因为n的范围是正整数,然后3是质数。在正整数范围内最大的3的n次方是19。所以如果n能被3的19次方整除,那么n就是3的power。

public boolean isPowerOfThree(int n) {
    if (n <= 0) {
        return false;
    }
    
    if (n == 1) {
        return true;
    }
    
    while (n >= 3) {
        if (n % 3 != 0) {
            return false;
        }
        n = n / 3;
    }
    
    return n == 1;
}

// 下面是leetcode答案
public boolean isPowerOfThree(int n) {
    if (n < 1) {
        return false;
    }

    while (n % 3 == 0) {
        n /= 3;
    }

    return n == 1;
}

// 数学解法,T:O(1), S:O(1)
public boolean isPowerOfThree(int n) {
    return n > 0 && 1162261467 % n == 0;
}
}j

Last updated