230 Kth Smallest Element in a BST
Given a binary search tree, write a functionkth Smallest
to find the kth smallest element in it.
Note: You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up: What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kth Smallest routine?
Hint:
Try to utilize the property of a BST.
What if you could modify the BST node's structure?
The optimal runtime complexity is O(height of BST).
解法一:脑残的我只能想到中序遍历然后一个一个数O(n)。解法二是来自leetcode discuss里的二分做法O(height),感觉有点像4 Median of Two Sorted Arrays那题。解法一:T:O(n),S:O(n),解法二:T:O(height)平均,O(N^2) worst,S:O(height),空间是递归的深度
public int kthSmallest(TreeNode root, int k) {
if (root == null) {
return Integer.MAX_VALUE;
}
Stack<TreeNode> s = new Stack<>();
TreeNode cur = root;
int cnt = 0;
while (!s.isEmpty() || cur != null) {
while (cur != null) {
s.push(cur);
cur = cur.left;
}
cur = s.pop();
cnt++;
if (cnt == k) {
return cur.val;
}
cur = cur.right;
}
return Integer.MAX_VALUE;
}
public int kthSmallest(TreeNode root, int k) {
int count = countNodes(root.left);
if (k <= count) {
return kthSmallest(root.left, k);
} else if (k > count + 1) {
return kthSmallest(root.right, k-1-count); // 1 is counted as current node
}
return root.val;
}
public int countNodes(TreeNode n) {
if (n == null) return 0;
return 1 + countNodes(n.left) + countNodes(n.right);
}
Last updated
Was this helpful?