Given a set of candidate numbers (C)(without duplicates)and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set[2, 3, 6, 7]and target7,
A solution set is:
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> res = new ArrayList<>();
if (candidates == null || candidates.length == 0) {
return res;
}
ArrayList<Integer> tmp = new ArrayList<>();
dfsHelper(tmp, res, target, 0, candidates);
return res;
}
private void dfsHelper(ArrayList<Integer> tmp, List<List<Integer>> res,
int target, int start, int[] candidates) {
if (target == 0) {
res.add(new ArrayList<>(tmp));
return;
}
// i begins from start, because we pick previous numbers already.
// now need to pick following numbers
for (int i = start; i < candidates.length; i++) {
// if bigger than target, target will be neg, so we skip them
if (candidates[i] > target) {
continue;// not break, because the set is not ordered
}
tmp.add(candidates[i]);
// recur from i, bucause same number can use more than once
dfsHelper(tmp, res, target - candidates[i], i, candidates);
tmp.remove(tmp.size() - 1);
}
}
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> res = new ArrayList<>();
if (candidates == null || candidates.length == 0) {
return res;
}
List<Integer> tmp = new ArrayList<>();
dfs(res, tmp, candidates, 0, target);
return res;
}
private void dfs(List<List<Integer>> res, List<Integer> tmp,
int[] nums, int start, int target) {
if (target <= 0) {
res.add(new ArrayList<>(tmp));
return;
}
for (int i = start; i < nums.length; i++) {
if (target < nums[i]) {
continue;
}
tmp.add(nums[i]);
dfs(res, tmp, nums, i, target - nums[i]);
tmp.remove(tmp.size() - 1);
}
}