1551 Minimum Operations to Make Array Equal

You have an array arr of length n where arr[i] = (2 * i) + 1 for all valid values of i (i.e. 0 <= i < n).

In one operation, you can select two indices x and y where 0 <= x, y < n and subtract 1 from arr[x] and add 1 to arr[y] (i.e. perform arr[x] -=1 and arr[y] += 1). The goal is to make all the elements of the array equal. It is guaranteed that all the elements of the array can be made equal using some operations.

Given an integer n, the length of the array. Return the minimum number of operations needed to make all the elements of arr equal.

Example 1:

Input: n = 3
Output: 2
Explanation: arr = [1, 3, 5]
First operation choose x = 2 and y = 0, this leads arr to be [2, 3, 4]
In the second operation choose x = 2 and y = 0 again, thus arr = [3, 3, 3].

Example 2:

Input: n = 6
Output: 9

Constraints:

  • 1 <= n <= 10^4

这题,只要把数字写出来分析一下就会发现规律。因为有数学解法,所以归类到这里。因为生成的数组是对称的。而且每次操作可以同时+1,-1。所以只要找到中位数,算前一半的数字要加多少次才能等于中位数就ok了。T:O(n), S:O(1)

public int minOperations(int n) {
    if (n < 1) {
        return Integer.MAX_VALUE;
    }

    int count = 0;
    for (int i = 0; i < n / 2; i++) {
        int val = 2 * i + 1;
        count = count + n - val;
    }

    return count;
}

// 数学解:
public int minOperations(int n) {
    return n % 2 == 0 ? n * n / 4 : (n * n - 1) / 4;
}

Last updated