Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo10^9 + 7.
A subsequence of a string S is obtained by deleting 0 or more characters from S.
A sequence is palindromic if it is equal to the sequence reversed.
Two sequencesA_1, A_2, ...andB_1, B_2, ...are different if there is someifor whichA_i != B_i.
Example 1:
Input:S = 'bccb'
Output: 6
Explanation:
The 6 different non-empty palindromic subsequences are 'b', 'c', 'bb', 'cc', 'bcb', 'bccb'.
Note that 'bcb' is counted only once, even though it occurs twice.
Example 2:
Input:S = 'abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba'
Output: 104860361
Explanation:
There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.
Note:
The length ofSwill be in the range[1, 1000].
Each characterS[i]will be in the set{'a', 'b', 'c', 'd'}.
int k = 1000000000 + 7;
public int countPalindromicSubsequences(String S) {
if (S == null || S.length() == 0) {
return 0;
}
int n = S.length();
int[][] memo = new int[n][n];
return count(S, 0, n - 1, memo);
}
private int count(String S, int s, int e, int[][] memo) {
if (s > e) {
return 0;
}
if (s == e) {
memo[s][e] = 1;
return 1;
}
if (memo[s][e] > 0) {
return memo[s][e];
}
long res = 0;
if (S.charAt(s) == S.charAt(e)) {
res = 2 * count(S, s + 1, e - 1, memo);
int l = s + 1;
int r = e - 1;
while (l <= r && S.charAt(l) != S.charAt(s)) {
l++;
}
while (l <= r && S.charAt(r) != S.charAt(s)) {
r--;
}
if (l > r) {
res = res + 2;
} else if (l == r) {
res = res + 1;
} else if (l < r) {
res = res - count(S, l + 1, r - 1, memo);
}
} else {
res = count(S, s + 1, e, memo) + count(S, s, e - 1, memo) - count(S, s + 1, e - 1, memo);
}
res = (res + k) % k;
memo[s][e] = (int)res;
return memo[s][e];
}
贴一个递推作为参考:原code出自花花酱
// Author: Huahua
// Runtime: 79 ms
class Solution {
public:
int countPalindromicSubsequences(const string& S) {
int n = S.length();
vector<vector<int>> dp(n, vector<int>(n, 0));
for (int i = 0; i < n; ++i)
dp[i][i] = 1;
for (int len = 1; len <= n; ++len) {
for (int i = 0; i < n - len; ++i) {
const int j = i + len;
if (S[i] == S[j]) {
dp[i][j] = dp[i + 1][j - 1] * 2;
int l = i + 1;
int r = j - 1;
while (l <= r && S[l] != S[i]) ++l;
while (l <= r && S[r] != S[i]) --r;
if (l == r) dp[i][j] += 1;
else if (l > r) dp[i][j] += 2;
else dp[i][j] -= dp[l + 1][r - 1];
} else {
dp[i][j] = dp[i][j - 1] + dp[i + 1][j] - dp[i + 1][j - 1];
}
dp[i][j] = (dp[i][j] + kMod) % kMod;
}
}
return dp[0][n - 1];
}
private:
static constexpr long kMod = 1000000007;
};