334 Increasing Triplet Subsequence
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should:
Return true if there exists i, j, k such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n -1 else return false.
Your algorithm should run in O(n) time complexity and O(1) space complexity.
Examples:
Given[1, 2, 3, 4, 5]
,
returntrue
.
Given[5, 4, 3, 2, 1]
,
returnfalse
.
感觉这题像414那样,很容易想复杂了,因为这题看上去很像300,所以一上来我就O(n^2)地写了一个。然后看了答案才发现,原来还有更简单的方法。用两个变量来记录最小,和次小,然后一边loop一边更新,如果找到第三个大于前两个的话,我们就返回true。
O(n)的:
public boolean increasingTriplet(int[] nums) {
if (nums == null || nums.length < 3) {
return false;
}
int small = Integer.MAX_VALUE;
int big = Integer.MAX_VALUE;
for (int elem : nums) {
if (elem <= small) { //最小
small = elem;
} else if (elem <= big) {//次小
big = elem;
} else {
return true;
}
}
return false;
}
n方的:
public boolean increasingTriplet(int[] nums) {
if (nums == null || nums.length < 3) {
return false;
}
int n = nums.length;
int[] dp = new int[n];
for (int i = 0; i < n; i++) {
dp[i] = 1;
for (int j = 0; j < i; j++) {
if (nums[j] < nums[i]) {
dp[i] = Math.max(dp[j] + 1, dp[i]);
if (dp[i] >= 3) {
return true;
}
}
}
}
return false;
}
Last updated
Was this helpful?