Given a target number, a non-negative integerk
and an integer array A sorted in ascending order, find the k closest numbers to target in A, sorted in ascending order by the difference between the number and target. Otherwise, sorted in ascending order by number if the difference is same.
Example
Given A =[1, 2, 3]
, target =2
and k =3
, return[2, 1, 3]
.
Given A =[1, 4, 6, 8]
, target =3
and k =3
, return[4, 1, 6]
.
Challenge
O(logn + k) time complexity.
首先找插入位置(35 ),然后再从那个位置开始找前后元素的diff最靠近target的。
Copy // 几年后又抄了一遍
public int [] kClosestNumbers( int [] a , int target , int k) {
if (a == null || a . length == 0 ) {
return null ;
}
int [] result = new int [k];
int loc = findFirstLargerThan(a , target) ;
int left = loc - 1 ;
int right = loc;
for ( int i = 0 ; i < k; i ++ ) {
if ( isLeftCloser(a , target , left , right) ) {
result[i] = a[left];
left -- ;
} else {
result[i] = a[right];
right ++ ;
}
}
return result;
}
private boolean isLeftCloser( int [] a , int target , int left , int right) {
if (left < 0 ) {
return false ;
}
if (right >= a . length ) {
return true ;
}
if (target - a[left] != a[right] - target) {
return target - a[left] < a[right] - target;
}
return true ; // if equal pick left first,所以相等时候return true, pick left
}
private int findFirstLargerThan( int [] a , int target) {
int start = 0 ;
int end = a . length - 1 ;
while (start + 1 < end) {
int mid = start + (end - start) / 2 ;
if (a[mid] >= target) {
end = mid;
} else {
start = mid;
}
}
if (a[start] >= target) {
return start;
}
if (a[end] >= target) {
return end;
}
return a . length ;
}
public int [] kClosestNumbers( int [] A , int target , int k) {
if (A == null || A . length == 0 || k < 0 ) {
return null ;
}
if (k > A . length ) {
return A;
}
int [] res = new int [k];
if (k == 0 ) {
return res;
}
int cur = 0 ;
int loc = findFirst(A , target) ;
int start = loc - 1 ;
int end = loc;
while (cur < k) {
if (start < 0 ) {
res[cur] = A [end ++ ];
} else if (end >= A . length ) {
res[cur] = A [start -- ];
} else {
if ((target - A [start]) <= ( A [end] - target)) {
res[cur] = A [start -- ];
} else {
res[cur] = A [end ++ ];
}
}
cur ++ ;
}
return res;
}
private int findFirst( int [] A , int target) {
int start = 0 ;
int end = A . length - 1 ;
while (start + 1 < end) {
int mid = start + (end - start) / 2 ;
if (target > A [mid]) {
start = mid;
} else {
end = mid;
}
}
if ( A [start] >= target) {
return start;
}
if ( A [end] >= target) {
return end;
}
return A . length ;
}
Copy // 换个变量名好像容易记住点
public List< Integer > findClosestElements( int [] arr , int k , int x) {
List < Integer > res = new ArrayList <>();
if (arr == null || arr . length == 0 || k < 0 ) {
return res;
}
int loc = findInsert(arr , x) ;
int cur = 0 ;
int left = loc - 1 ;
int right = loc;
while (cur < k) {
if (left < 0 ) {
res . add (arr[right ++ ]);
} else if (right >= arr . length ) {
res . add (arr[left -- ]);
} else {
if (x - arr[left] <= arr[right] - x) {
res . add (arr[left -- ]);
} else {
res . add (arr[right ++ ]);
}
}
cur ++ ;
}
Collections . sort (res);
return res;
}
private int findInsert( int [] nums , int target) {
int start = 0 ;
int end = nums . length - 1 ;
while (start + 1 < end) {
int mid = start + (end - start) / 2 ;
if (nums[mid] < target) {
start = mid;
} else {
end = mid;
}
}
if (nums[start] >= target) {
return start;
} else if (nums[end] >= target) {
return end;
} else {
return end + 1 ;
}
}