Given an array of n integer, and a moving window(size k), move the window at each iteration from the start of the array, find the median of the element inside the window at each moving. (If there are even numbers in the array, return the N/2-th number after sorting the element in the window. )
Example
For array[1,2,7,8,5], moving window size k = 3. return[2,7,7]
At first the window is at the start of the array like this
public ArrayList<Integer> medianSlidingWindow(int[] nums, int k) {
ArrayList<Integer> res = new ArrayList<Integer>();
if (nums == null || nums.length == 0 || k < 1) {
return res;
}
PriorityQueue<Pair> minHeap = new PriorityQueue<>();
PriorityQueue<Pair> maxHeap = new PriorityQueue<>(nums.length, Collections.reverseOrder());
for (int i = 0; i < nums.length; i++) {
Pair cur = new Pair(nums[i], i);
if (maxHeap.isEmpty()) {
maxHeap.offer(cur);
} else if (minHeap.isEmpty()) {
maxHeap.offer(cur);
minHeap.offer(maxHeap.poll());
} else if (cur.val > minHeap.peek().val) {
minHeap.offer(cur);
} else {
maxHeap.offer(cur);
}
if ((maxHeap.size() + minHeap.size()) > k) {
maxHeap.remove(new Pair(nums[i - k], i - k));
minHeap.remove(new Pair(nums[i - k], i - k));
}
if (maxHeap.size() > minHeap.size() + 1) {
minHeap.offer(maxHeap.poll());
} else if (minHeap.size() > maxHeap.size()) {
maxHeap.offer(minHeap.poll());
}
if (i >= k - 1) {
res.add(maxHeap.peek().val);
}
}
return res;
}
}
class Pair implements Comparable<Pair> {
int val;
int loc;
public Pair(int v, int l) {
val = v;
loc = l;
}
@Override
public int compareTo(Pair other) {
return val - other.val;
}
@Override
public int hashCode() {
return Objects.hash(val, loc);
}
@Override
public boolean equals(Object obj) {
if (obj instanceof Pair) {
Pair p = (Pair) obj;
return val == p.val && loc == p.loc;
}
return false;
}
}