775 Global and Local Inversions
We have some permutation A of [0, 1, ..., N - 1], where N is the length of A.
The number of (global) inversions is the number of i < j with 0 <= i < j < N and A[i] > A[j].
The number of local inversions is the number of i with 0 <= i < N and A[i] > A[i+1].
Return true if and only if the number of global inversions is equal to the number of local inversions.
Example 1:
Input: A = [1,0,2]
Output: true
Explanation: There is 1 global inversion, and 1 local inversion.Example 2:
Input: A = [1,2,0]
Output: false
Explanation: There are 2 global inversions, and 1 local inversion.Note:
Awill be a permutation of[0, 1, ..., A.length - 1].Awill have length in range[1, 5000].The time limit for this problem has been reduced.
这题一看,还以为是segment tree呢,然后,瞧了一眼提示,再画了几个栗子,发现,global 增长的比local快好多。所以只有swap相邻两个数的时候才有可能是相等。然后因为数字是从0到N - 1,这跟下标相对应。所以,只要判断数字跟下标的差就能知道是不是swap了相距超过1的数字。T:O(n), S:O(1)
public boolean isIdealPermutation(int[] A) {
if (A == null || A.length == 0) {
return true;
}
for (int i = 0; i < A.length; i++) {
if (Math.abs(A[i] - i) > 1) {
return false;
}
}
return true;
}Previous1228 Missing Number In Arithmetic ProgressionNext1551 Minimum Operations to Make Array Equal
Last updated
Was this helpful?