775 Global and Local Inversions
We have some permutation A
of [0, 1, ..., N - 1]
, where N
is the length of A
.
The number of (global) inversions is the number of i < j
with 0 <= i < j < N
and A[i] > A[j]
.
The number of local inversions is the number of i
with 0 <= i < N
and A[i] > A[i+1]
.
Return true
if and only if the number of global inversions is equal to the number of local inversions.
Example 1:
Example 2:
Note:
A
will be a permutation of[0, 1, ..., A.length - 1]
.A
will have length in range[1, 5000]
.The time limit for this problem has been reduced.
这题一看,还以为是segment tree呢,然后,瞧了一眼提示,再画了几个栗子,发现,global 增长的比local快好多。所以只有swap相邻两个数的时候才有可能是相等。然后因为数字是从0到N - 1,这跟下标相对应。所以,只要判断数字跟下标的差就能知道是不是swap了相距超过1的数字。T:O(n), S:O(1)
Previous1228 Missing Number In Arithmetic ProgressionNext1551 Minimum Operations to Make Array Equal
Last updated