775 Global and Local Inversions

We have some permutation A of [0, 1, ..., N - 1], where N is the length of A.

The number of (global) inversions is the number of i < j with 0 <= i < j < N and A[i] > A[j].

The number of local inversions is the number of i with 0 <= i < N and A[i] > A[i+1].

Return true if and only if the number of global inversions is equal to the number of local inversions.

Example 1:

Input: A = [1,0,2]
Output: true
Explanation: There is 1 global inversion, and 1 local inversion.

Example 2:

Input: A = [1,2,0]
Output: false
Explanation: There are 2 global inversions, and 1 local inversion.

Note:

  • A will be a permutation of [0, 1, ..., A.length - 1].

  • A will have length in range [1, 5000].

  • The time limit for this problem has been reduced.

这题一看,还以为是segment tree呢,然后,瞧了一眼提示,再画了几个栗子,发现,global 增长的比local快好多。所以只有swap相邻两个数的时候才有可能是相等。然后因为数字是从0到N - 1,这跟下标相对应。所以,只要判断数字跟下标的差就能知道是不是swap了相距超过1的数字。T:O(n), S:O(1)

public boolean isIdealPermutation(int[] A) {
    if (A == null || A.length == 0) {
        return true;
    }

    for (int i = 0; i < A.length; i++) {
        if (Math.abs(A[i] - i) > 1) {
            return false;
        }
    }

    return true;
}

Last updated