You are given two integer arrays nums1and nums2 sorted in ascending order and an integer k.
Define a pair(u,v)which consists of one element from the first array and one element from the second array.
Find the k pairs(u1,v1),(u2,v2) ...(uk,vk)with the smallest sums.
Example 1:
Given nums1 = [1,7,11], nums2 = [2,4,6], k = 3
Return: [1,2],[1,4],[1,6]
The first 3 pairs are returned from the sequence:
[1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
Example 2:
Given nums1 = [1,1,2], nums2 = [1,2,3], k = 2
Return: [1,1],[1,1]
The first 2 pairs are returned from the sequence:
[1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]
Example 3:
Given nums1 = [1,2], nums2 = [3], k = 3
Return: [1,3],[2,3]
All possible pairs are returned from the sequence:
[1,3],[2,3]
这两个数组是递增的,所以它们的和会是一个按行和按列递增的矩阵。这就和前面的那条L465 Kth Smallest Sum In Two Sorted Arrays很相似了。这里主要注意非法输入的判断和while loop的结束条件。因为如果k比所有可能解的数目都大的话,我们在输出所有可能解以后跳出循环。T:O(klog(对角线长度)),进堆log对角线长度,S:O(m*n),visited数组的大小。
public List<int[]> kSmallestPairs(int[] nums1, int[] nums2, int k) {
List<int[]> res = new ArrayList<>();
if (nums1 == null || nums2 == null) {
return res;
} else if (nums1.length == 0 || nums2.length == 0) {
return res;
} else if (k < 0) {
return res;
}
int n = nums1.length;
int m = nums2.length;
PriorityQueue<Node> pq = new PriorityQueue<>(k, new Comparator<Node> (){
public int compare(Node n1, Node n2) {
return n1.sum - n2.sum;
}
});
boolean[][] visited = new boolean[n][m];
pq.offer(new Node(0, 0, nums1[0] + nums2[0]));
visited[0][0] = true;
while (res.size() < k && res.size() < n * m) {
Node cur = pq.poll();
int i = cur.r;
int j = cur.c;
int[] tmp = new int[2];
tmp[0] = nums1[i];
tmp[1] = nums2[j];
res.add(tmp);
if (i + 1 < n && !visited[i + 1][j]) {
pq.offer(new Node(i + 1, j, nums1[i + 1] + nums2[j]));
visited[i + 1][j] = true;
}
if (j + 1 < m && !visited[i][j + 1]) {
pq.offer(new Node(i, j + 1, nums1[i] + nums2[j + 1]));
visited[i][j + 1] = true;
}
}
return res;
}
class Node {
int r;
int c;
int sum;
public Node(int i, int j, int s) {
r = i;
c = j;
sum = s;
}
}