1477 Find Two Non-overlapping Sub-arrays Each With Target Sum
You are given an array of integers arr and an integer target.
You have to find two non-overlapping sub-arrays of arr each with a sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum.
Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.
Example 1:
Input: arr = [3,2,2,4,3], target = 3
Output: 2
Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2.
Example 2:
Input: arr = [7,3,4,7], target = 7
Output: 2
Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2.
Example 3:
Input: arr = [4,3,2,6,2,3,4], target = 6
Output: -1
Explanation: We have only one sub-array of sum = 6.
这个做法是,先左到右来一遍prefixSum求min,再右到左来一遍suffixSum求min,最后从左到右过一遍,把前后加起来的min返回就好了。但一直没掌握好的138又出来了。这次好像已经懂了。就是,prefixSum可以先把位置存在值里。又或者可以像437 Path Sum III 存path的个数。每次如果在prefixSum的hashmap里,找到了现在为止的sum_so_far - target的值,证明,那个位置到到现在这个位置那一段subarray,是target的值。举个栗子:
public int minSumOfLengths(int[] arr, int target) {
if (arr == null || arr.length == 0) {
return -1;
}
int len = arr.length;
int best = Integer.MAX_VALUE;
int[] left = new int[len];
int sum = 0;
// <preSum, loc>
Map<Integer, Integer> preSumMap = new HashMap<>();
preSumMap.put(0, -1);
for (int i = 0; i < len; i++) {
sum = sum + arr[i];
if (preSumMap.containsKey(sum - target)) {
best = Math.min(best, i - preSumMap.get(sum - target));
}
left[i] = best;
preSumMap.put(sum, i);
}
best = Integer.MAX_VALUE;
int[] right = new int[len];
sum = 0;
// <sufSum, loc>
Map<Integer, Integer> sufSumMap = new HashMap<>();
sufSumMap.put(0, len);
for (int i = len - 1; i >= 0; i--) {
sum = sum + arr[i];
if (sufSumMap.containsKey(sum - target)) {
best = Math.min(best, sufSumMap.get(sum - target) - i);
}
right[i] = best;
sufSumMap.put(sum, i);
}
int result = Integer.MAX_VALUE;
for (int i = 1; i < len; i++) {
if (left[i - 1] != Integer.MAX_VALUE && right[i] != Integer.MAX_VALUE) {
result = Math.min(left[i - 1] + right[i], result);
}
}
return result == Integer.MAX_VALUE ? -1 : result;
}