Given an integer array, find a subarray where the sum of numbers is in a given interval. Your code should return the number of possible answers. (The element in the array should be positive)
Example
Given[1,2,3,4]and interval =[1,3], return4. The possible answers are:
public int subarraySumII(int[] A, int start, int end) {
if (A == null || A.length == 0) {
return 0;
}
int n = A.length;
// calculate prefix sum, becasue the array contains all positive numbers,
// so the prefix sum array will be in increasing order.
int[] prefixSum = new int[n + 1];
for (int i = 1; i <= n; i++) {
prefixSum[i] = prefixSum[i - 1] + A[i - 1];
}
// do binary search in range sum
int count = 0;
for (int i = 1; i <= n; i++) {
// use this instead of a loop to find the proper j in the range [0 ~ (i - 1)]
// will lower the T from O(n^2) to O(nlogn)
int right = find(prefixSum, i - 1, prefixSum[i] - start + 1);
int left = find(prefixSum, i - 1, prefixSum[i] - end);
count += right - left;
}
return count;
}
// this function is use to do binary search for value in prefix sum array,
// which smaller than 'value' ends at index 'last'
private int find(int[] prefixS, int last, int value) {
if (prefixS[0] >= value) {
return 0;
}
if (prefixS[last] < value) {
return last + 1;
}
int l = 0;
int r = last;
while (l + 1 < r) {
int mid = l + (r - l) / 2;
if (prefixS[mid] < value) {
l = mid;
} else {
r = mid;
}
}
if (prefixS[r] < value) {
return r + 1;
} else {
return l + 1;
}
}