public int shortestPathBinaryMatrix(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) {
return -1;
}
int n = grid.length;
if (grid[0][0] != 0 || grid[n - 1][n - 1] != 0) {
return -1;
}
boolean[][] visited = new boolean[n][n];
Queue<Integer> queue = new LinkedList<>();
queue.offer(0);
visited[0][0] = true;
int[] x = {0, 0, -1, 1, 1, -1, -1, 1};
int[] y = {-1, 1, 0, 0, 1, -1, 1, -1};
int level = 1;
int result = -1;
while (!queue.isEmpty()) {
int size = queue.size();
for (int i = 0; i < size; i++) {
int cur = queue.poll();
int curi = cur / n;
int curj = cur % n;
if (curi == n - 1 && curj == n - 1) {
return level;
}
for (int k = 0; k < 8; k++) {
int nexti = curi + x[k];
int nextj = curj + y[k];
if (inBound(nexti, nextj, n) && !visited[nexti][nextj] && grid[nexti][nextj] == 0) {
queue.offer(nexti * n + nextj);
visited[nexti][nextj] = true;
}
}
}
level++;
}
return result;
}
private boolean inBound(int i, int j, int n) {
if (i < 0 || j < 0 || i >= n || j >= n) {
return false;
} else {
return true;
}
}
// 贴一个A*,T:O(nlogn),因为heap。S:O(n)
class Solution {
// Candidate represents a possible option for travelling to the cell
// at (row, col).
class Candidate {
public int row;
public int col;
public int distanceSoFar;
public int totalEstimate;
public Candidate(int row, int col, int distanceSoFar, int totalEstimate) {
this.row = row;
this.col = col;
this.distanceSoFar = distanceSoFar;
this.totalEstimate = totalEstimate;
}
}
private static final int[][] directions =
new int[][]{{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1}};
public int shortestPathBinaryMatrix(int[][] grid) {
// Firstly, we need to check that the start and target cells are open.
if (grid[0][0] != 0 || grid[grid.length - 1][grid[0].length - 1] != 0) {
return -1;
}
// Set up the A* search.
Queue<Candidate> pq = new PriorityQueue<>((a,b) -> a.totalEstimate - b.totalEstimate);
pq.add(new Candidate(0, 0, 1, estimate(0, 0, grid)));
boolean[][] visited = new boolean[grid.length][grid[0].length];
// Carry out the A* search.
while (!pq.isEmpty()) {
Candidate best = pq.remove();
// Is this for the target cell?
if (best.row == grid.length - 1 && best.col == grid[0].length - 1) {
return best.distanceSoFar;
}
// Have we already found the best path to this cell?
if (visited[best.row][best.col]) {
continue;
}
visited[best.row][best.col] = true;
for (int[] neighbour : getNeighbours(best.row, best.col, grid)) {
int neighbourRow = neighbour[0];
int neighbourCol = neighbour[1];
// This check isn't necessary for correctness, but it greatly
// improves performance.
if (visited[neighbourRow][neighbourCol]) {
continue;
}
// Otherwise, we need to create a Candidate object for the option
// of going to neighbor through the current cell.
int newDistance = best.distanceSoFar + 1;
int totalEstimate = newDistance + estimate(neighbourRow, neighbourCol, grid);
Candidate candidate =
new Candidate(neighbourRow, neighbourCol, newDistance, totalEstimate);
pq.add(candidate);
}
}
// The target was unreachable.
return -1;
}
private List<int[]> getNeighbours(int row, int col, int[][] grid) {
List<int[]> neighbours = new ArrayList<>();
for (int i = 0; i < directions.length; i++) {
int newRow = row + directions[i][0];
int newCol = col + directions[i][1];
if (newRow < 0 || newCol < 0 || newRow >= grid.length
|| newCol >= grid[0].length
|| grid[newRow][newCol] != 0) {
continue;
}
neighbours.add(new int[]{newRow, newCol});
}
return neighbours;
}
// Get the best case estimate of how much further it is to the bottom-right cell.
private int estimate(int row, int col, int[][] grid) {
int remainingRows = grid.length - row - 1;
int remainingCols = grid[0].length - col - 1;
return Math.max(remainingRows, remainingCols);
}
}