396 Rotate Function
Given an array of integersA
and letnto be its length.
AssumeBk
to be an array obtained by rotating the arrayA
kpositions clock-wise, we define a "rotation function"F
onA
as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
.
Calculate the maximum value ofF(0), F(1), ..., F(n-1)
.
Note: nis guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6]
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
这题直接做O(n^2)会TEL。这是超时的代码。
public int maxRotateFunction(int[] A) {
if (A == null || A.length == 0) {
return 0;
}
int n = A.length;
int max = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
int curSum = 0;
for (int j = 0; j < n; j++) {
curSum += ((j + i) % n) * A[j];
}
max = Math.max(curSum, max);
}
return max;
}
看了discuss的答案,原来是得推导的,推了发现每个sum之间的关系,然后可以把复杂度降低到O(n):
首先把式子列出来。
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
F(k-1) = 0 * Bk-1[0] + 1 * Bk-1[1] + ... + (n-1) * Bk-1[n-1]
= 0 * Bk[1] + 1 * Bk[2] + ... + (n-2) * Bk[n-1] + (n-1) * Bk[0]
然后,相减发现规律:
F(k) - F(k-1) = Bk[1] + Bk[2] + ... + Bk[n-1] + (1-n)Bk[0]
= (Bk[0] + ... + Bk[n-1]) - nBk[0]
= sum - nBk[0]
移项可得:
F(k) = F(k-1) + sum - nBk[0]
然后找Bk[0]:
k = 0; B[0] = A[0];
k = 1; B[0] = A[len-1];
k = 2; B[0] = A[len-2];
...
最后代码是:
int allSum = 0;
int len = A.length;
int F = 0;
for (int i = 0; i < len; i++) {
F += i * A[i];
allSum += A[i];
}
int max = F;
for (int i = len - 1; i >= 1; i--) {
F = F + allSum - len * A[i];
max = Math.max(F, max);
}
return max;
Last updated
Was this helpful?