1310 XOR Queries of a Subarray
Given the array arr
of positive integers and the array queries
where queries[i] = [Li, Ri]
, for each query i
compute the XOR of elements from Li
to Ri
(that is, arr[Li]
xor
arr[Li+1]
xor
...
xor
arr[Ri]
). Return an array containing the result for the given queries
.
Example 1:
Input: arr = [1,3,4,8], queries = [[0,1],[1,2],[0,3],[3,3]]
Output: [2,7,14,8]
Explanation:
The binary representation of the elements in the array are:
1 = 0001
3 = 0011
4 = 0100
8 = 1000
The XOR values for queries are:
[0,1] = 1 xor 3 = 2
[1,2] = 3 xor 4 = 7
[0,3] = 1 xor 3 xor 4 xor 8 = 14
[3,3] = 8
Example 2:
Input: arr = [4,8,2,10], queries = [[2,3],[1,3],[0,0],[0,3]]
Output: [8,0,4,4]
Constraints:
1 <= arr.length <= 3 * 10^4
1 <= arr[i] <= 10^9
1 <= queries.length <= 3 * 10^4
queries[i].length == 2
0 <= queries[i][0] <= queries[i][1] < arr.length
这题一看,感觉套路怎么这么像prefix Sum,但是这里换了xor。自己算了一下发现,其实xor也有加法性质。(note:另外log也有,提醒自己一下)一开始用0就ok了,因为0异或任何数等于任何数。T:O(n), S:O(n)
public int[] xorQueries(int[] arr, int[][] queries) {
if (arr == null || arr.length == 0 || queries == null || queries.length == 0) {
return null;
}
int n = arr.length;
int[] prefixXor = new int[n + 1];
for (int i = 1; i <= n; i++) {
prefixXor[i] = prefixXor[i - 1] ^ arr[i - 1];
}
int m = queries.length;
int[] result = new int[m];
for (int i = 0; i < m; i++) {
int from = queries[i][0];
int to = queries[i][1];
result[i] = prefixXor[to + 1] ^ prefixXor[from];
}
return result;
}
Last updated
Was this helpful?