Given an array nums of 0s and 1s and an integer k, return True if all 1's are at least k places away from each other, otherwise return False.
Example 1:
Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.
Example 2:
Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.
Example 3:
Input: nums = [1,1,1,1,1], k = 0
Output: true
Example 4:
Input: nums = [0,1,0,1], k = 1
Output: true
Constraints:
1 <= nums.length <= 105
0 <= k <= nums.length
nums[i] is 0 or 1
一开始想到的是strstr那样的解法,还是调了一阵子才不off by one。T: O(n)
public boolean kLengthApart(int[] nums, int k) {
if (nums == null || nums.length == 0 || k < 0) {
return false;
}
for (int i = 0; i < nums.length; i++) {
if (nums[i] == 0) {
continue;
}
for (int j = 0; j < k && j + i + 1 < nums.length; j++) {
if (nums[i + j + 1] == 1) {
return false;
}
}
}
return true;
}
一看答案,发现自己傻了
public boolean kLengthApart(int[] nums, int k) {
// initialize the counter of zeros to k
// to pass the first 1 in nums
int count = k;
for (int num : nums) {
// if the current integer is 1
if (num == 1) {
// check that number of zeros in-between 1s
// is greater than or equal to k
if (count < k) {
return false;
}
// reinitialize counter
count = 0;
// if the current integer is 0
} else {
// increase the counter
++count;
}
}
return true;
}
public boolean kLengthApart(int[] nums, int k) {
// convert binary array into int
int x = 0;
for (int num : nums) {
x = (x << 1) | num;
}
// base case
if (x == 0 || k == 0) {
return true;
}
// remove trailing zeros
while ((x & 1) == 0) {
x = x >> 1;
}
while (x != 1) {
// remove trailing 1-bit
x = x >> 1;
// count trailing zeros
int count = 0;
while ((x & 1) == 0) {
x = x >> 1;
++count;
}
// number of zeros in-between 1-bits
// should be greater than or equal to k
if (count < k) {
return false;
}
}
return true;
}