Giventimes, a list of travel times as directed edgestimes[i] = (u, v, w), whereuis the source node,vis the target node, andwis the time it takes for a signal to travel from source to target.
Now, we send a signal from a certain nodeK. How long will it take for all nodes to receive the signal? If it is impossible, return-1.
Note:
Nwill be in the range[1, 100].
Kwill be in the range[1, N].
The length oftimeswill be in the range[1, 6000].
All edgestimes[i] = (u, v, w)will have1 <= u, v <= Nand1 <= w <= 100.
public int networkDelayTime(int[][] times, int N, int K) {
if (times == null || times.length == 0 || K < 0 || N < 0) {
return -1;
}
// <n1, list<nei, dist>>
Map<Integer, List<int[]>> graph = new HashMap<>();
for (int[] edge : times) {
int n1 = edge[0];
int n2 = edge[1];
int dist = edge[2];
if (!graph.containsKey(n1)) {
graph.put(n1, new ArrayList<>());
}
graph.get(n1).add(new int[]{n2, dist});
}
// make a min heap to quickly find the min cost edge
PriorityQueue<int[]> pq = new PriorityQueue<>(
(e1, e2) -> (e1[0] - e2[0])
);
// starting node's dist to itself is 0
pq.offer(new int[]{0, K});
// <node, dist>
Map<Integer, Integer> visitedAndDist = new HashMap<>();
while (!pq.isEmpty()) {
int[] edge = pq.poll();
int dist = edge[0];
int node = edge[1];
// visited
if (visitedAndDist.containsKey(node)) {
continue;
}
visitedAndDist.put(node, dist);
// this node doesn't have neighbour
if (!graph.containsKey(node)) {
continue;
}
// process this node's neighbour
for (int[] e : graph.get(node)) {
int nei = e[0];
int distToNei = e[1];
// not visited yet
if (!visitedAndDist.containsKey(nei)) {
pq.offer(new int[]{dist + distToNei, nei});
}
}
}
// cannot reach some of the nodes
if (visitedAndDist.size() != N) {
return -1;
}
// find max
int max = 0;
for (int d : visitedAndDist.values()) {
max = Math.max(max, d);
}
return max;
}
另外看到人家用邻接表写,好像挺快的,抄下来作为参考.
public int networkDelayTime(int[][] times, int N, int K) {
int[][] graph = new int[N+1][N+1];
for (int i = 0; i < graph.length; i++) {
for (int j = 0; j < graph[i].length; j++) {
graph[i][j] = Integer.MAX_VALUE;
}
}
for (int[] edge: times) {
graph[edge[0]][edge[1]]=edge[2];
}
int[] dist=new int[N+1];
boolean[] seen=new boolean[N+1];
for(int n=0;n<dist.length;++n) {
dist[n]=Integer.MAX_VALUE;
}
dist[K]=0;
while(true) {
int candi=-1;
int candiDist=Integer.MAX_VALUE;
for(int i=1;i<=N;i++) {
if(!seen[i]&& dist[i]<candiDist){
candi=i;
candiDist=dist[i];
}
}
if(candi==-1)
break;
seen[candi]=true;
for(int v=1;v<=N;++v){
if(!seen[v]&&graph[candi][v]!=Integer.MAX_VALUE&&dist[candi]+graph[candi][v]<dist[v])
dist[v]=dist[candi]+graph[candi][v];
}
}
int ans=0;
// for(int cand:dist){
// if(cand==Integer.MAX_VALUE)
// return -1;
// ans=Math.max(ans,cand);
// }
for(int i=1;i<=N;i++){
if(dist[i]==Integer.MAX_VALUE)
return -1;
ans=Math.max(ans,dist[i]);
}
return ans;
}