Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
public int minimumTotal(int[][] triangle) {
if (triangle == null || triangle.length == 0 || triangle[0].length == 0) {
return 0;
}
int n = triangle.length;
int[][] dp = new int[n][n];
// init last row
for (int j = n - 1; j >= 0; j--) {
dp[n - 1][j] = triangle[n - 1][j];
}
for (int i = n - 2; i >= 0; i--) {
for (int j = i; j >= 0; j--) {
dp[i][j] = triangle[i][j] + Math.min(dp[i + 1][j], dp[i + 1][j + 1]);
}
}
return dp[0][0];
}
public int minimumTotal(int[][] triangle) {
if (triangle == null || triangle.length == 0) {
return -1;
}
if (triangle[0] == null || triangle[0].length == 0) {
return -1;
}
// state: f[x][y] = minimum path value from x,y to bottom
int n = triangle.length;
int[][] f = new int[n][n];
// initialize
for (int i = 0; i < n; i++) {
f[n - 1][i] = triangle[n - 1][i];
}
// bottom up
for (int i = n - 2; i >= 0; i--) {
for (int j = 0; j <= i; j++) {
f[i][j] = Math.min(f[i + 1][j], f[i + 1][j + 1]) + triangle[i][j];
}
}
// answer
return f[0][0];
}