1855 Maximum Distance Between a Pair of Values
You are given two non-increasing 0-indexed integer arrays nums1
and nums2
.
A pair of indices (i, j)
, where 0 <= i < nums1.length
and 0 <= j < nums2.length
, is valid if both i <= j
and nums1[i] <= nums2[j]
. The distance of the pair is j - i
.
Return the maximum distance of any valid pair (i, j)
. If there are no valid pairs, return 0
.
An array arr
is non-increasing if arr[i-1] >= arr[i]
for every 1 <= i < arr.length
.
Example 1:
Input: nums1 = [55,30,5,4,2], nums2 = [100,20,10,10,5]
Output: 2
Explanation: The valid pairs are (0,0), (2,2), (2,3), (2,4), (3,3), (3,4), and (4,4).
The maximum distance is 2 with pair (2,4).
Example 2:
Input: nums1 = [2,2,2], nums2 = [10,10,1]
Output: 1
Explanation: The valid pairs are (0,0), (0,1), and (1,1).
The maximum distance is 1 with pair (0,1).
Example 3:
Input: nums1 = [30,29,19,5], nums2 = [25,25,25,25,25]
Output: 2
Explanation: The valid pairs are (2,2), (2,3), (2,4), (3,3), and (3,4).
The maximum distance is 2 with pair (2,4).
Constraints:
1 <= nums1.length, nums2.length <= 105
1 <= nums1[i], nums2[j] <= 105
Both
nums1
andnums2
are non-increasing.
这个题,很经典的双指针,而且有点2sum的感觉,只是这里的判断条件不是sum == target,而是i <= j && nums1[i] <= nums2[j]。如果符合条件,我们算max,如果不符合的时候,我们移动指针。因为条件限制了i <= j,然后max是算j - i,所以j一定要比i大,不符合条件,同时向右。然后还有一种情况是,i <= j, j到了结尾了。这种情况也不需要特判,因为j - i求的是max,就算继续移动i向右也不可能得到更大的值。所以两个条件都归纳到else里了。T:O(n + m),S: O(1)
public int maxDistance(int[] nums1, int[] nums2) {
if (nums1 == null || nums2 == null ||
nums1.length == 0 || nums2.length == 0) {
return -1;
}
int max = 0;
int i = 0;
int j = 0;
while (i < nums1.length && j < nums2.length) {
if (i <= j && nums1[i] <= nums2[j]) {
max = Math.max(j - i, max);
j++;
} else {
i++;
j++;
}
}
return max;
}
Last updated
Was this helpful?